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1. Summary

We investigated standards for the exchange of security policies and other
security and privacy related restrictions to accessing healthcare data. We
describe use cases that gather data during the treatment of patients, as well as
use cases that need access to data for analytical purposes. These use cases were
expressed using the Healthcare Classification System and Patient Consent
Directive of the HL7 standards. We describe how data collected from disparate
medical data sources can be accessed for analytical purposes, governed by
security policies imposed by the source systems. We implemented prototypes
for de-identification and access control using the Row Level Security feature
developed as part of T2.1.

2. Introduction

In a healthcare facility, such as a hospital, data is collected while treating
patients. As patient data is considered sensitive by law, the custodian organi-
sations limit access to such data to only the users that are necessary for the
purpose of use. To this end, healthcare organisations author access policies
based on patient consent and regulations, to establish who may access what
data under what circumstances.

In the context of a European-scale data analytics scenario, patient data, origi-
nally collected in various hospitals, laboratories, and so on, is transferred to
a data storage for research. As health data is originally protected by various
policies in the healthcare organisation it comes from, the same protection poli-
cies must still hold in a collaborative analytics framework. The interoperability
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between healthcare organisations and a collaborative analytics framework
breaks the boundaries of a single department or organisation and imposes
new challenges. Thus, it becomes crucial to adhere to standard ways to model
the data, express various concepts and security policies, and communicate
this with the organisations involved.

The goal of Task 2.4 is to examine the security and privacy aspects of an
architecture for collaborative data analytics. Ultimately, we aim at providing
an architecture for safe access to patient data for data mining purposes. To
this end, we look at the means currently available for protecting privacy
in a standard healthcare organisation (e.g., hospital), and further, we exam-
ine mechanisms to preserve the data protection in a collaborative analytics
framework.

2.1. Primary vs. secondary use of health data

The distinction between primary and secondary use of healthcare data is an
initial step in the analysis of why healthcare data must be protected, and
to what extent the data can be protected. Figure 2.1 presents a schematic
overview.

Primary use of data is the collection and use of data for the treatment of
patients. Healthcare providers that are involved in the treatment of patients
need to access the EMR to assess the current status, access new results from
lab tests, and update the EMR to reflect updates in the treatment plan. The
data collected during treatment is used for claims and reimbursement, quality
reporting, as well as research to improve future treatments, such as data
analytics for clinical decision support. This use of data is called secondary use
of healthcare data.

Compared to primary use, secondary use requires different access control and
privacy protection measures. The reasons are the following:

No direct relationship with the patient In contrast with primary use, where
the data users are the providers that treat the patient, with secondary
use the data users have no direct treating relationship with the patient.
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Figure 2.1.: Primary vs. secondary use of healthcare data.

There is no need to access the data with the purpose of improving health
of the patient at hand.

Comprehensive knowledge Usually information systems for secondary use
collect data from many specialized information systems that are used for
the active treatment in specialized departments. This creates a compre-
hensive picture of all summarized treatments. While this comprehensive
picture is necessary for research purposes, it also creates a higher risk of
exposure when information is disclosed.

Long term data storage When time passes and the active treatment of a
patient is over, there is less need to access the treatment data, and
patients are less inclined to disclose their health data. Traditionally,
departmental information systems would archive old data. However,
advancements in economic storage allow systems for secondary use to
keep keep data much longer. There is a tension between long term data
storage and ‘the right to be forgotten’.

To summarize, the further away from the point of care in time, and the people
involved, the more protection data needs.
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2.2. Data Lake for Secondary Use

To perform data analytics on a European-scale healthcare database, it is neces-
sary to collect data from an array of medical data sources (MDS), e.g., EMR’s
from hospitals, into a single, integrated data storage. To this end, we consider
what in the big data jargon is known as a data lake. The main difference
between a data warehouse and a data lake is that in a data warehouse the data
is pre-categorized at the point of entry, which can dictate how it is going to be
analyzed. In contrast, in a data lake, like in the scenarios we foresee, the data
can be used for a number of secondary use purposes–not necessarily known a
priori, upon data collection–including analytics, reporting, accountability and
so on. Hence, the data should be stored in its ‘raw’ state.

Data Lake

* Medical Data Source

MDS*MDS

MDS MDS

Data Scientist Backend

Figure 2.2.: Illustration of a framework for collaborative analytics.

As depicted in Figure 2.2, the data lake interfaces with medical source organi-
sations that are part of the collaborative analytics framework, and with data
scientists, who may employ various libraries and tools to perform analytics
on the collected data. In this context, in order to provide data scientists access
to health data, we identify the following challenges:

Data variety Various medical organisations may use different ways to model
data and to express medical concepts. In a data lake scenario as de-
scribed above, this would tremendously increase the complexity of using
the data in its entirety. Adopting standard data models and vocabulary
for expressing medical concepts at the medical source organisations is
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crucial for facilitating data processing for secondary use in a collabora-
tive data lake environment.

Privacy and security Every medical organisation has its own rules for deter-
mining access to patient data, which are typically based on regulations,
practical use and patient will. The way data is used for primary and
secondary use is quite different, and as a consequence, so are the secu-
rity access policies. Since we assume that in a data lake environment
the data is used only for secondary use purposes, selected policies cor-
responding to the allowed use should be taken into account. Again, in
order to automatically compute and enforce access policies deriving
from different medical data sources, standards play an important role.

Many projects In a data lake environment, it is often necessary that a multi-
tude of projects operate on the collected data, all in different ways. For
example, a project may be required to perform analytics on particularly
sensitive data. In this case, it may be necessary to restrict access to such
data to a very limited number of users and to increase protection barriers
that aim at de-identifying patients. It is thus necessary to automate data
governance, privacy protection and management for each individual
project.

2.3. Restrictions for handling patient data

Medical data are sensitive data under Article 8 (1) of the Data Protection
Directive [9], and as such, they are subject to a stricter data-processing regime
than non-sensitive data. For one, explicit consent is required and processing is
permissible only where performed by a healthcare professional subject to an
obligation of professional secrecy [9]. In addition, a number of circumstances
require special protection as individuals may be exposed to potential risks
of financial, reputational or personal harm if their health data is made avail-
able to unauthorized individuals or entities. Think of genetic information,
mental health information, the health information of children and adolescents
and other sensitive information such as health records of VIPs. In this case,
additional protection may be required.
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In a collaborative analytics environment, which demands interoperability
between different medical data sources, such security concepts should be
recognized and properly interpreted by all the parties involved in data pro-
cessing. This way, security policies that impose access restriction to certain
health records can be correctly enforced at a data lake.

2.4. Problem Statement

The main question from a security and privacy perspective is how we can
make data available for research in a data lake environment in such a way
that:

1. National and EU law regarding protecting healthcare data is not violated.
2. Patient consent is not violated.
3. Organisational policies regarding access to healthcare data of the source

operational data sources is not violated.

Based on the challenges described above, our contribution is focused in two
directions. First, we examine the way data is modelled at individual Medical
Data Sources and the privacy protection mechanisms. To this end, we refer to
the standards proposed by the non-profit organisation for interoperability in
healthcare, Health Level 7 (HL7). Second, we look at data protection mecha-
nisms at a data lake environment, and transformations required on tabular
data before the data is handed out to data analysts.
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3. Standards for security in healthcare

In the last few years the Security Working Group of Health Level 7 has been
developing Healthcare Classification System (HCS), an architecture that is
suitable for “...automated privacy and security labeling and segmentation of
protected health information (PHI) for privacy policy enforcement through
security access control services...” [14]. HCS is centered around security labels,
which are used to tag resources (e.g., clinical facts). Security access policies
refer to such labels in order to determine access on labelled resources. In
addition, Privacy Consent Directive Implementation Guide [15] describes a
data model to record a client’s health information privacy consent(s) and to
exchange those privacy consent directives with other entities (i.e., custodians
of the client’s health records).

In the rest of this chapter we discuss in detail the main security components as
introduced by HL7 and show how they fit in a data analytics environment.

3.1. Security Labels

Security Labels are meta-data that convey constraints on the use of a labelled
resource. Labels are used in access control policies as attributes to express
access rules when such labelled resources are requested. Security labels are
grouped in the following categories:

Confidentiality is probably the most important label. It is used to indicate
the degree of classification of a clinical fact. The values range from ‘not
restricted’ to ‘very restricted’. It is also included in the Hl7 version 3

RIM.
Category indicates the law that protects a clinical fact.
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Integrity is used to express the reliability of the inserted data (e.g., inserted
by patient, nurse, doctor, device)

Control is also known as Handling Instructions and it indicates handling
caveats when clinical documents are exchanged between two or more
systems. For example, the source organization may indicate that the
purpose of use is treatment before sending out patient data to another
organization. In addition, it can indicate transformation obligations
to the clinical facts upon reception (e.g. de-identify). The receiving
organization has to comply with the handling caveats.

For each of the categories there is a set of labels with various possible
values. Table 3.1 illustrates some examples of labels for each of the cat-
egories. An important label in the scenario we are looking at is Control,
Handling instructions. The medical data sources may choose to tag the
health records with the following labels before transferring them to the data
lake: PurposeOfUse = HRESCH (health research), ObligationPolicy =

DEID (de-identify). This labeling prevents the recipient organization to
use the records for purposes other than health research or in a way that
patients can be identifiable. A complete list of security labels can be found in
the HL7 Security Label Vocabulary [13].

Category Examples of label names Examples of label values

Confidentiality - confidentialityCode - normal, restrictive, very restrictive

Category - InformationSensitivityPolicy - HIV, ETH,PSY

Integrity
- IntegrityConfidence - highly reliable, uncertain reliability

- Provenance - clinician asserted, patient asserted, de-
vice asserted

- PurposeOfUse - treatment (TREAT), research
(HRESCH), clinical research

Control
- ObligationPolicy - de-identify (DEID), mask

Table 3.1.: Labelling of clinical facts

An important component of the HCS is the Security Labeling Service, which
automatically labels clinical facts upon data entry or data retrieval based on
Security Labelling Rules. Figure 3.1 illustrates how clinical facts are labelled.
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SLS

EHR

Clinical Fact

Labelled

Clinical Fact

Security

Labeling

Rules

Figure 3.1.: Security Labelling Service

A Security Labelling Rule typically consists of a condition and one or more
labels associated with it. For example, to tag HIV-related clinical facts, a
Security Labelling Rule could be expressed as follows:

if diagnosis=111880001 (HIV) and medication=11413 (Zidovudine)

then Security Label Tags are:

confidentialityCode=R (restricted) and

InformationSensitivityPolicy=HIV

In addition, clinical facts can be labeled also manually, at data entry, based
on patient’s request or professional judgment, irrespective of the Security
Labelling Rules. When a patient decides that certain clinical facts are sensitive
then the following Category label may apply:

InformationSensitivityPolicy=PRS (patient requested policy).

This is the case when a patient feels that a treatment is highly sensitive and
hence requires high access restriction.
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3.2. Access Control Policies

The goal of HCS is to provide a “..standard, computable, and semantically
interoperable means to apply sufficiently descriptive metadata about health-
care information so that rights of access can be established, and appropriate
access control decisions can be made at each layer of security services.” In the
previous section we introduced security labels as a means to describe health
data. Now we look at how security labels can be used to establish appropriate
access control decision.

Automated access control mechanisms, such as XACML [18] and drools [5],
allow to establish permissions using attributes to describe users and resources.
They provide an expressive and manageable way to control access to data in
face of very large databases with many roles and various resources. In simple
words, a system uses policies to describe, through attributes, who can access
what resources under what conditions. Each request specifies the requestor
(subject), the requested resources, the action to be performed on the resources
and other attributes necessary for deciding whether access can be established.
When the system receives a request, it looks up for a policies that match the
attributes of the request and apply the decision accordingly.

HCS integrates an access control mechanism in its design to determine access
to health data. Figure 3.2 shows a simplified version of HCS, which assumes
that data has been labelled at the time of entry. A request includes a number
of attributes. The proxy that intercepts the request looks up for policies that
have rules that match the attributes of the request. To do this, labels of the
requested resources are taken into account as part of the attributes necessary
for deciding data access. If authorization is granted, then the proxy will
retrieve the resources and return them.

Below, we illustrate a simple XACML policy, which determines that nurses of
the infectious department are allowed to insert and select sensitive information.
A rule is the most elementary unit of a policy and it consists of a Target, an
Effect (permit or deny) and a Condition. The Target defines the requests
to which the rule applies (e.g., subjects are nurses of the infectious disease
department and resources are sensitive information). A Condition may further
refine the applicability of the Target (e.g., requests received during the working
hours). Effect specifies whether access is granted. To enforce policies the
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attributes therein are translated into queries that are then run against the
database.

<policy>

<rule effect=permit>

<target>

<subjects>

<subject>

<id>position</id><value>nurse</value>

<id>department</id><value>infectious diseases</value>

<subject>

</subjects>

<resources>

<resource>sensitive information</resource>

<resources>

<actions>select, insert</actions>

</target>

</rule>

<policy>

Request

EHR

Response

P
ro

x
y

A
cc

e
ss

 C
o

n
tr

o
l

Labelled

Clinical Fact
Authorization

• subject

•  resources

• purpose of use

• action

•  resources

Get Resources

Figure 3.2.: HCS proposed design for accessing patient data within a medical data source.
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3.3. Patient Consent

While the Data Protection Directive establishes that patient consent is required
for processing health data, when such data is anonymised it falls outside the
scope of the Directive. More specifically, in the Dutch implementation of this
directive [17], patient data can be used without consent in the following two
instances:

• It is not reasonably possible to ask for consent and the privacy of the
patient is not unnecessarily jeopardised.

• Given the nature of the research, asking for consent is not feasible and
the data arrive at the researcher in such a way that re-identification is
sufficiently prevented.

The first instance is, among other things, applied to situations when the
patient is deceased or, also after a reminder, does not respond to a written
request asking for permission to use his or her data for a specific research. The
second instance applies to situations where many patients would retroactively
have to be asked for consent.

In both instances though the following conditions have to be met:

• The research serves a general interest
• The research cannot be carried out without those data
• The patient has not objected to such use of his or her data for research.

Basically, in order to use health data for research purposes, we have to make
sure that i) patient data is de-identified, and ii) any patient objection to using
the data for research should be taken into account.

In the next Chapter we discuss various techniques and issues related to the
de-identification of health data, whereas in Appendix A we show through
an example how patient consent is modelled according to the HL7 Privacy
Consent Directive Implementation Guide [15].

18



4. Protecting Tabular Data

4.1. Introduction

Once data has been loaded into the data lake, it must be transformed into
a tabular format suitable for statistical analysis. This chapter describes tech-
niques that can be used to protect tabular data. We use the following predictive
analytics use case to illustrate the protection methods.

Predict diabetic related micro-angiopathy

“Angiopathy is the generic term for a disease of the blood vessels (arteries,
veins, and capillaries). The best-known and most prevalent angiopathy is
diabetic angiopathy, a common complication of chronic diabetes. Chronic
dysregulated blood glucose in diabetes is toxic to cells of the vascular en-
dothelium which passively assimilate glucose. Ultimately this leads to diabetic
nephropathy - where protein leakage caused by late-stage angiopathy results
in diagnostic proteinuria and eventually renal failure. In diabetic retinopathy
the end-result is often blindness due to irreversible retinal damage.” [adapted
from Wikipedia]

Given a database with records of diabetic chronic disease management, predict if a
(hypothetical or real) patient will develop a form of micro-angiopathy.

To re-iterate this use case in terms of the original problem statement, the
question becomes: how can data be supplied to the data analyst, in such a way
that a statistical model to predict angiopathy can be build, while at the same
time the restrictions, obligations and handling caveats by the source systems
are applied.
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4.1.1. Tabular data

The basic information structure that analytic tools such as Orange, Matlab, R
and SAS operate on is tabular data. It is the task of the database system to
provide access to tabular data.

Each table (data sample / data set) contains i = 1, . . . , n rows. Each row (data
instance / example) has a number of input variables and one output variable.
The rows usually correspond to patients, also known as subjects, individuals
or record targets.

What kind of variables to prepare in the tabular data depends on the analytical
use case and the machine-learning algorithm chosen. Creating these tables and
removing or adding variables, is a repetitive process called feature selection. For
instance, the initial tabular data for the micro-angiopathy use case contains
variables related to:

• age
• gender
• smoking
• blood pressure
• total / HDL cholesterol
• HbA1c
• peripheral vascular disease (output variable)

These initial analytical tables form the boundary where secondary use of data
starts, and this is the point where filtering and de-identification techniques
must be applied.

4.1.2. Categorizing variables

One of the first steps in gaining insight in the amount of protection tabular data
needs, is to categorize variables according to sensitivity and re-identification
risk. We use the following categories as described by [16].

Direct Identifiers - names and uniquely identifying numbers such as social
security numbers. As direct identifiers are usually not correlated to the
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output variable, there is no need for direct identifiers in data sets for an-
alytics and must thus be removed. For situations where re-identification
of subjects is desirable, i.e. when analysis reveals a healthcare risk for
one of the de-identified subjects, a variable containing a pseudonym can
be added to each row. By storing the link between direct identifiers and
pseudonyms at a trusted third party (TTP), this can be done in such a
way that the real identity of patients is protected from the data analysts,
and the confidential data (variables) are not made known to the TTP.

Quasi-identifiers - a set of variables that, in combination, can be linked with
external information to re-identify (some of) the patients in the data
set. Unlike direct identifiers, quasi-identifiers cannot be removed. The
reason is that any variable in the data set potentially belongs to a quasi-
identifier, depending on the external data sources available to the user
of the data set. Thus, all variables would need to be removed to make
sure that the data set no longer contains quasi-identifiers.

Confidential variables - these variables contain sensitive information. All vari-
ables related to healthcare are considered confidential, but some vari-
ables are more sensitive than others. Goldstein et al. [11] describe the
following categories of highly sensitive data: mental health, data re-
garding minors, intimate partner violence and sexual violence, genetic
information and HIV related information. In addition, also data regard-
ing VIPs is highly sensitive.

Non-confidential variables - these variables contain non sensitive data about
the patients, such as town and country of residence. Note that these
variables cannot be neglected when protecting a data set, because they
can be part of a quasi-identifier. For instance, ‘Job’ and ‘Town of resi-
dence’ can be considered non-confidential outcome variables, but their
combination can be a quasi-identifier, because everybody knows who is
the doctor in a small village.

The use case to predict micro-angiopathy contains no direct identifiers. Age,
smoking and gender are quasi-identifiers, as these values are likely to appear
in other data sets as well, or can be otherwise linked to the patient through
external available information. This is usually not the case for blood pressure
and total / HDL cholesterol measurements. Typically, a series of recurring
blood pressure or HDL cholesterol measurements of a certain period will be
summarized with statistical aggregates, such as average, standard deviation
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and trend, over a certain period specific for the specific research project at
hand. Therefore blood pressure and total / HDL cholesterol are not classified
as part of a quasi-identifier and are ‘just’ confidential variables. To summarize,
the variables from the micro-angiopathy use case are classified as follows:

• Quasi-identifier: age, smoking and gender.
• Confidential variables: blood pressure and total / HDL cholesterol

4.2. Preparing Tabular Data

4.2.1. Disclosure Scenario

To decide which disclosure control method is appropriate for the micro-
angiopathy data set, it is useful to consider disclosure scenarios. Suppose
there exists an external archive, that contains one or more variables from the
quasi-identifier age, smoking and gender, together with direct identifiers such
as name and SSN, this archive can be used to link subjects in the protected
set with identifiers. The question is, whether such an external archive is
available about the same subjects from the protected data set. Publicly available
datasets such as CBS Opendata [3], consist of magnitude tabular data, such as
contingency tables that list the amount of female smokers in the age group
40-50. Since these kinds of tables do not contain direct identifiers, the data
cannot be linked to individuals, unless the magnitude in a cell is very small,
e.g., if there is only one female smoker in the age group >100 in the state
Utrecht. This is not the case for the CBS Opendata tables. The data collected
for the ‘Healthmonitor GGD’en, CBS and RIVM’ does contain the key data
from the micro-angiopathy quasi-identifier, but again no direct identifiers
are publicly available. It is possible, that the data analysts that prepare the
Healthmonitor datasets have access to age, smoking and gender, combined
with direct identifiers. Therefore there is a disclosure risk of the confidential
variables in the micro-angiopathy dataset, only if the dataset will be directly
or indirectly accessible to the same organization. In this scenario, it is possible
to re-identify a subject when the values in the quasi-identifier are ‘rare’ in the
population. The definition of rare requires a threshold to be chosen for each
combination of variables from the quasi-identifiers (key). A key is safe when it
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occurs more often than the threshold. Hundepool et al. [16] describe methods
to calculate the disclosure risk for categorical, continuous and combinations
of categorical and continuous quasi-identifiers. See also section 4.2.4.

4.2.2. Cohort selection

The task of cohort selection is to select which patients we want to include in
the data analysis. This phase in the analytics project overlaps with quality
measure projects, where there is also a need to define which patients do, or
do not count, for a certain measure. Examples of cohorts are:

patients with HbA1c >50 mmol/mol

and have not had a yearly diabetic check up in the last year.

patients that are younger than 80

and have a LDL measurement in the last year with a value > 2,5

and didn’t use lipid lowering medications in the last year

and doesn’t use statins currently

is currently under treatment for CardioVascular Risk Management

Excluding restricted data segments

The kind of filtering in the cohort selection phase matches the kind of filtering
needed for the following protection measures:

• Exclude specific segments of data from patients that have opted out
for research, as described in Section3.3. For instance, if a patient has
opted out for research of data related to mental health treatment, records
pertaining to mental health must be excluded.

• Exclude data from VIPs. How clinical data is security labeled with VIP
codes is described in the RLS prototype scenario 3 in appendix A.2.

These patients and their observations can be filtered from the resulting tabular
data with the RLS feature developed as part of T2.1. A prototype healthcare
database to test RLS is described in appendix A.
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4.2.3. Feature selection

Medical Data sources, such as EMR’s and laboratory systems, register many
different kinds of variables. For a specific healthcare analytic project, only a
subset of the available variables will be relevant or useful. Also the format
in which data is recorded is often not immediately useful for a specific ML
algorithm. Feature selection/transformation is the task to select the relevant
variables and process them to be appropriate input for the ML algorithm.
Feature selection [12] is a repetitive task with the data analyst in the loop.
An initial investigation wherein besides the data analyst, also a domain
expert (medical doctor) is involved, is useful to perform an initial inclusion or
exclusion of variables.

Example tasks of feature selection are:

• Convert physical quantity observations to canonical values, so they are
comparable as numeric numbers without unit.

• Rank variables.
• Normalize variables if they are not commensurate.
• Select a subset of variables (forward/stepwise addition vs backward

selection/pruning).
• Test statistical model performance of a subset of variables.
• Convert recurring event data into summaries.

4.2.4. Protecting quasi-identifiers

Each time in the feature selection phase, when a different set of variables
are selected to build a statistical model for, the re-identification risk can be
assessed and appropriate measures must be taken, before the tabular data can
be made available.

1. Determine which variables form a quasi-identifier.
2. Determine if the data user has access to external data where data with

the same key values are linked to identifiable data.
3. Take appropriate measures to protect the quasi-identifier. Safe harbor

is safe enough for the micro-angiopathy use case, but this is not true
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for the general case. See [16] for a thorough reference of techniques to
assess risk and techniques to protect data.

There are a number of methods to protect quasi-identifiers, that can be cat-
egorized in non-perturbative and perturbative methods. Drawback of all
protection methods is that there is loss of information. While methods exist
to calculate information loss [16] and definitions are given to decide whether
a protected data set is ‘analytically valid’, the calculations are performed on
the columns of the data sets, rather than the space spanned by the vectors
(rows).

Safe Harbor De-identification

A well known de-identification technique is called Safe Harbor De-identification
[4]. Safe Harbor de-identification is a fixed set of rules; it does not base the
data transformation on the frequencies of key values in the quasi-identifiers.
Consequently, Safe Harbor is only safe to use on data sets where the key
values from the quasi-identifiers have high population frequencies, and a
result, low re-identification risks. See [7] for a discussion on the limitations of
using Safe Harbor.

The following rule from Safe Harbor applies to the data set of the micro-
angiopathy use case:

• All elements of dates (except year) for dates directly related to an
individual, including birth date, admission date, discharge date, date
of death; and all ages over 89 and all elements of dates (including
year) indicative of such age, except that such ages and elements may be
aggregated into a single category of age 90 or older.

The benefit of safe harbor for the micro-angiopathy data set is three fold:

1. Safe harbor is a de-identification technique approved by the US HIPAA
legislation. As EU and Dutch law do not prescribe a specific de-identification
algorithm, but rather requirements of any de-identification algorithm,
the same statement cannot be made for EU and Dutch law in the general
case.
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2. It is easy to implement and validate. Complexity of the algorithm is
O(n) on the number of rows in the table.

3. There is no information loss on values other than the birth time, which
is generalized to the birth year. Arguably this information loss does
not impair analytical value to predict angiopathy, or in fact all medical
conditions other than conditions that occur in infants or children.

Other de-identification algorithms

Hundepool et al. [16] describe a number of de-identification methods, al-
gorithms and software, divided into non-perturbative (suppression, global
recoding, sampling) and perturbative methods (adding noise, micro aggre-
gation, data swapping, data shuffling and rounding). Of these methods, the
generalization-based algorithms, global recoding for categorical data and
micro aggregation for continuous data, cause the least loss of information for
analytics on healthcare data, as they target outliers and perturb categories
and values, so the individual outliers are replaced by representative values of
a group of k values, to achieve k-anonymity. There exist several algorithms
for recoding and micro aggregation, and commercial as well as open source
toolkits exist that implement these [10].

In the context of AXLE, using a component separate from the database to
perform de-identification would be infeasible, since the dataset would be too
large to move to this component. Therefore, such an algorithm could only be
implemented at database-level. No currently available open implementations
were found that could easily be re-used for this purpose. To investigate the
feasibility of an implementation at database-level, a prototype implementation
of Optimal Lattice Anonymization (OLA) was developed as described in
Appendix B. OLA achieves k-anonymity by applying a combination of gener-
alization and suppression, a technique very commonly used in practice [6, 8].
Within the family of algorithms utilizing these techniques, OLA guarantees
achieving k-anonymity with a minimal amount of information loss, hence
preserving analytical value in the best way possible.

Drawback of this sequential implementation of OLA is high computational
complexity, exponential in the number of key values in the quasi-identifier.
As Hundepool et al. [16] indicate, the lowest computational complexity of
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useful micro aggregation (multi-variate heuristic micro aggregation) is O(n2)
in the number of rows. A full investigation into developing a data parallel
algorithms for de-identification of big datasets is a large project and outside
of the scope for the AXLE project.

Estimating re-identification risk

There are a number of methods to calculate re-identification risks for quasi-
identifiers that contain categorical, continuous data, or a mix of both. All
methods are based on quantifying per-record rarity of the values in the
quasi-identifier attributes [16]. Though most re-identification techniques are
intended to calculate risk before SDC methods are applied, assessing re-
identification risk is also useful to estimate whether a table de-identified with
Safe Harbor is safe to release. Methods to measure the re-identification risk
also differ in whether the risk of re-identification in the sample (data set)
is estimated (prosecutor risk), or re-identification in the whole population
(journalist risk).

To estimate re-identification risk of the micro-angiopathy data set we use the
following method from [6]. The probability that record i is correctly identified
is denoted θi, where i ∈ 1, . . . , n and n is the number of records in the table.
Let J be the set of equivalence classes in the data set containing only the
quasi-identifier values. Since all of the records in the same equivalence class
will have the same probability θi, we will refer to the probability θj for an
equivalence class where j ∈ J. For the micro-angiopathy data set we will
use the metric for θj associated with the prosecutor risk, which assumes that
the attacker knows that the victim is in the data set. For the prosecutor risk,
θj = 1/ f j where f j is the size of the equivalence class j in the data set. Given
a pre-defined threshold τ, we can now calculate the proportion R of records
that have a re-identification probability higher than this threshold:

R =
1

n ∑
j∈J

f j × I(θj > τ)

where I is the indicator function returning 1 if the argument is true and false
otherwise.
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Equivalence classes of the quasi-identifier and the corresponding values for
θj were calculated on the micro-angiopathy data set. The data set contains
n ≈ 33000 rows, and the most rare quasi-identifier has a frequency fk = 13
with associated risk θj ≈ 0.077. The amount of records at risk depends on the
value we choose for the threshold τ. [6] cites the value 0.05 as the low end of
threshold risks seen in current practice. Using this value, 2.6% of the records
in the micro-angiopathy are risk for the prosecutor.

Is this an acceptable risk? The answer depends on the dissemination level
of the data set. For public dissemination, the risk might be considered too
high. Conversely, if the data set is made available to the data analyst with
additional mitigating controls, such as remote execution and accepting license
requirements that prohibit downloading and re-identification, the risk can be
considered low. Another cause for the seemingly high risk, is the assumption
made by the prosecutor risk measure, that the attacker knows whether an
individual is a member of the disclosed data set. The following scenario
shows that this is not too far fetched. Suppose that the prosecutor knows
that the data set contains data of only diabetic patients of a single healthcare
organization. The specific healthcare organization could be inferred from the
number of patients listed in the organization’s annual report, if that number
coincides with the size of the data set. Related to a healthcare organization is
the region it serves, and consequently, if the prosecutor knows that somebody
has diabetes and lives in the region of the healthcare organization, there
is a high probability that the person is in the data set. In this scenario the
prosecutor risk is an appropriate measurement to calculate re-identification
risk.

This re-identification risk was calculated on a data set de-identified with
Safe Harbor. For data sets where the risk after application of Safe Harbor is
decided to be to high, an alternative de-identification technique must be used.
See section 4.2.4 and the OLA prototype described in appendix B for more
information.
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5. Conclusions and future work

We have described the environment in which healthcare organizations must
find a balance between recording confidential healthcare data in databases,
and providing access to that data for primary and secondary use, where both
usability and privacy are maximised.

This deliverable report describes an architecture for a secure healthcare data
lake, that uses the security policies authored by the medical data sources,
including patient consent, to provide limited access for secondary use to
data analysts. We have shown how these source policies can be enforced on
analytical tabular data. Enforcement is implemented by adding additional
filter clauses in the cohort selection phase, as well as by posing Safe Harbor
restrictions on variables selected in the feature selection phase.

Prototypes of protecting healthcare data with RLS, and de-identification with
OLA have been made.

No further work on T2.4 and T2.5 is planned, except preparing a demonstra-
tion of access control and de-identification, based on the synthetic dataset
D6.2. To this end, confidentiality codes and patient consent directives will be
added to the synthetically generated data. For the benchmark queries, security
requirements have been specified, but RLS and de-identification have only
been partially implemented. With the recent commit of RLS into PostgreSQL
9.5, an integrated demonstration is now possible. The queries that create
tabular data for the analytic use cases, defined on the synthetic dataset, will
be secured using methods described in this report, i.e., row level security,
de-identification and measuring re-identification risk. This will allow profiling
and benchmarking possible to demonstrate performance improvements made
by AXLE for preparing analytical tables on large healthcare databases.
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Appendix A.

Prototype of Row Level Security in a
healthcare database

We illustrate with an example how labelled health data can be safely accessed
based on security polices for analytics purposes. To this end, we adopt a
standard data model for healthcare data and use PostgreSQL Row Level
Security for expressing and enforcing access policies at the database level.

A.1. Representation of health data

Performing analytics on health data that derives from different organziations
and countries requires a common way to model data and express domain-
specific concepts. We use the HL7 version 3 RIM (HL7v3RIM), which has been
developed by the organization for standards and interoperability in healthcare,
Health Level 7, and is widely adopted among healthcare organizations. In
HL7v3RIM there are six high-level concepts to describe all clinical data:
entities, roles, acts, participations, role links, and act relationships, as shown
in Figure A.1. There are several specializations of main classes.

Entities can be organizations or also persons. A role can be played by an entity
and is scoped in another entity. For example, patient is a role that is played by
a person (an entity) and is scoped by an organization (also an entity). Acts
describe events. For example, observations and examinations are acts. Role
participate in acts. For example, a patient role can participate as a subject in
an observation and a practitioner role can participate as a performer in an
observation.
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Figure A.1.: RIM

A.2. Use Cases

We create a small RIM database in order to represent a number of scenarios.
Further, we show a couple of security policies and use Row Level Security to
enforce them upon data access request.

Scenario 1 Mary White has been diagnosed with diabetes type II and is
being treated at Community Health and Hospitals ( CHH). Dr. Pete
Zuckerman, employed at the CHH, is the treating physician for diabetes
of Mary White (AssignedEntity). In the context of her diabetes treatment,
Mary White has her blood pressure measured by Dr. Pete.

Scenario 2 Mary White is also being treated for Chronic Obstructive Pul-
monary Disease (COPD) at CHH. Her principal physician for this treat-
ment is Dr. Ronan Lang.

Scenario 3 Isabella Jones is a celebrity. She is being treated for diabetes at
CHH by Dr. Pete Zuckerman. CHH has a labelling rule that each record
attributed to vip patients is labelled with confidentialityCode = v.

Figure A.2 illustrates Scenario 1 as a representation in a RIM database. Mary
White is an Entity that plays the role of Patient and participates as a Receiver
in the Observation that represents the act of measuring the Systolic Blood Pres-
sure. On the other hand, Dr. Pete Lang participates in the same Observation
as a Performer and has the Role of Assigned Entity within the organization
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Community Health Hospital. The Act Relationship that connects this Obser-
vation with the CareProvision represents the fact that the Observation is done
in the context of a Diabetes treatment.

ENTITY ROLE PARTICIPATION ACT

Receiver

Performer

Patient

AssignedEntity

Person

Organization

Person

Observation

classCode = OBS

moodCode = EVN

code = 271649006 (Sys.blood pressure)

statusCode = completed

con�dentialityCode = r

e�ectiveTime:<timestamp>

value = 130

name = Mary White

name = Community

Health Hospital

name = Pete

                Zuckerman
CareProvision

classCode = PCPR

moodCode = EVN

code = 73211009 (Diabetes Mellitus)

statusCode = active

con�dentialityCode = r

e�ectiveTime:<timestamp>

ACT RELATIONSHIP typeCode = component

Figure A.2.: Representation of Scenario 1 in a RIM database.

While the CHH may have a vast number of security access control policies,
we only consider security policies that are targeted for research purposes. In
the standard HL7 there is a code to specify purpose of use.

Security Policy 1 Mary White issues a consent opt-out for research purposes
regarding records collected throughout her diabetes treatment.

Security Policy 2 The Community Health Hospitals has a policy that restricts
access to records labelled with confidentialityCode = v only to the
treating physicians. The use for research purposes is also not allowed.

Figure A.3 shows the representation of a consent opt-out according to the
HL7 Consent Directive Guide [15]. It is important to note the codes used and
the HL7 classes involved, which are specific to model a consent.
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Figure A.3.: Representation of a patient consent opt out as described in the Security Policy 1.

The Security Policy 2 may be expressed through XACML notation as shown
below. The policy is composed by two rules, the first denying access to ‘very
restricted information’ to all subjects, the second allows access to treating
physicians, and finally a third one to explicitly deny access for research use.
The rule-combining option permit-overrides at the policy level makes sure
that permit is granted to subjects where at least one permit rule exists. Each
of the attributes in the policy is resolved into a query by the XACML PIP
component.

<policy ruleCombiningAlgId=permit-overrides>

<rule effect=deny>
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<target>

<resources>

<resource>very restricted information</resource>

<resources>

<actions>select, insert</actions>

</target>

</rule>

<rule effect=permit>

<target>

<subjects>

<subject>

<id>position</id><value>treating physician</value>

<subject>

</subjects>

<resources>

<resource>very restricted information</resource>

<resources>

<actions>select, insert</actions>

</target>

</rule>

<rule effect=deny>

<target>

<resources>

<resource>very restricted information</resource>

<resources>

<actions>select, insert</actions>

</target>

<condition><id>purposeOfUse</id><value>research</value></condition>

</rule>

<policy>

A.3. Access control with RLS

To use health data for research purposes in a data lake environment it is
necessary to comply with organization policies and patient’s consent denials,
which may require determined records to be left out. As data arrives from
different organizations, we assume that medical data sources transfer all
patient data to a data lake, along with security policies specific for secondary
purposes, expressed in a standard representation, such as XACML. In order
to safely access data in accordance with MDS policies, we adopt PostgreSQL
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Row Level Security, which provide much faster authorization and data access
compared to XACML.

Row Level Security is a security feature of PostgreSQL implemented in the
context of AXLE WP 2.1. It allows one to define policies and enforce them
upon request for data operation. RLS policies are applied to database tables
in order to grant access to a subset of rows under certain conditions.

ALTER TABLE <name> ENABLE ROW LEVEL SECURITY;

CREATE POLICY <name> ON <table>

[ FOR { ALL | SELECT | INSERT | UPDATE | DELETE } ]

[ TO { PUBLIC | <role> [, <role> ] } ]

USING (<condition>)

RLS policies apply to individual tables. When RLS is enabled on a table,
records of that table can only be accessed when the RLS condition is true.
Condition–the core of a RLS policy–is a query that returns a boolelan value.

The security policies we have considered determine opt-out rules based on
security labels associated to clinical facts. Moreover, patient consent opt-out
is based on the clinical treatment (Care Provision). To simplify the condition
query we use auxiliary tables where opt-out policies are expressed in terms of
attributes, such as security labels and care provision.

As depicted in Figure A.4, table ExcludeClinicalFactsPolicies has for each or-
ganization information about labels that should be left out. For the Patient
table, only the value of confidentialityCode is used since no security labels
apply at the Role classes. Finally, OptOutConsent, contains information about
the care provision of patients who have objected to have their data used for
research purposes.

For example, Figure A.5 shows the representation of the Security Policy 2,
while patient consent opt-out scenario is represented in Figure A.6.

In a RIM database, the tables with confidential information are Role (Patient)
and Act classes with their subclasses. We show below an example of the RLS
policies for the two Security Policies introduced above.
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ExcludeClinicalFactsPolicies

• organizationID

• labelName

• labelValue

ExcludePatientDataPolicies

• organizationID

• con�dentialityCodeValue

OptOutConsent

• organizationID

• patientID

• patientCareProvision

Figure A.4.: Exclusion policies

ExcludeClinicalFactsPolicies

• organization = Community Health 

 Hospitals

• labelName = con�dentialityCode

• labelValue = v

ExcludePatientDataPolicies

• organization = Community Health 

 Hospitals

• con�dentialityCodeValue = v

Figure A.5.: Scenarios of exclusion of labelled resources. Both for clinical facts and patient
table.

ALTER TABLE Act ENABLE ROW LEVEL SECURITY;

ALTER TABLE Patient ENABLE ROW LEVEL SECURITY;

CREATE POLICY p1 ON Act FOR ALL

USING (

confidentialityCode not in

(SELECT policy.labelValue FROM ExcludeClinicalFactsPolicies policy

WHERE

policy.organizationID = _org_id

AND policy.labelName = ‘confidentialityCode’)

AND

not(_care_provision && array(

SELECT consent.patientCareProvision FROM OptOutConsent consent

WHERE consent.patientID = _patient_id)));

CREATE POLICY p2 ON Patient FOR ALL

USING (

confidentialityCode not in

(SELECT policy.confidentialityCodeValue

FROM ExcludePatientDataPolicies policy

WHERE policy.organizationID = _scoper));
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OptOutConsent

• organization = Community 

 Health Hospitals

• patient = Mary White

• patientCareProvision = 73211009

 (Diabetes Mellitus) 

Figure A.6.: Scenarios of patient consent with opt out from research for records of a certain
care provision.

The first policy applies on table Act and combines both Security Policies intro-
duced above. In fact the first part prevents access to records labeled according
to exclusion policies defined in table ExcludeClinicalFactsPolicies, while the
second part prevents access to records with consent denials as specified in
table OptOutConsent. We omit <role>, which implies that the policy applies
to all roles (<public>). The condition has a boolean expression that is evalu-
ated upon the request to access table Act through a select, insert, update or
delete operation. In table Act we have included shortcuts to additional infor-
mation needed by the RLS policies, such as Organization ( org id), Patient
( patient id), and CareProvision ( care provision). Similarly, the second
RLS policy applies on table Patient and prevents access to patients with a
confidentialityCode as defined in table ExcludePatientDataPolicies.

A complete prototype of the RLS security policies considered in this Appendix
can be found on the AXLE github page [1].
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Appendix B.

De-identification using Optimal Lattice
Anonymization

Optimal Lattice Anonymization (OLA, [8]) is an example of a generalization-
based algorithm, a reference implementation of which was created in the
context of the AXLE project. The algorithms combines generalization of quasi-
identifiers and suppression of outlying data vectors to achieve k-anonymity
while minimizing information loss within a data set.

B.1. Algorithm description

In this section we will describe the OLA algorithm. For this description, an
important concept is the concept of generalization trees. Generalization is used
to decrease the number of unique values for a quasi-identifier in the data
set. After generalization, a specific value for this quasi-identifier taken from
the data set is shared by multiple rows in the data set, hence lowering the
risk of re-identification of a single row. The number of unique values after
generalization will be lower for greater extents of generalization. We can order
different levels of generalization in hierarchies and we can obtain a higher
generalization level by taking the union of two values as a new value. For
example, we can combine the two ranges [0, 5) and [5, 10) into the single (more
general) range [0, 10), which can be considered a parent in the generalization
tree. The OLA algorithm requires us to define such generalization trees in
advance for each quasi-identifier that we intend to generalize. The algorithm
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aims to find an optimal balance in choosing generalization levels for each
quasi-identifier.

All possible combinations of generalization levels are evaluated against a
single qualifier: the amount of suppression needed in order for the data set
to satisfy the k-anonymity constraint. The value of k needs to be chosen be-
forehand. A fixed threshold for suppression amount is also chosen up front
and all generalization combinations yielding a suppression amount above this
threshold are discarded as candidates. Of the remaining combinations, the
combination requiring the lowest amount of generalization (i.e. the lowest
generalization levels on all quasi-identifiers combined) is chosen as the best
solution. This solution is assumed to maximally preserve statistically rele-
vant characteristics (hence lowest information loss). Generalization is applied
following that combination and a minimal number of rows is suppressed in
order to achieve k-anonymity.

We can describe the steps of the algorithm in natural language as follows:

Before starting the algorithm:

• Choose desired k-anonymity level
• Choose maximum suppression threshold (dmax)
• Build generalization trees for all quasi-identifiers

Next, the following steps are taken to evaluate all possible combinations of
generalization levels:

1. Create a lattice using combinations of generalization levels as nodes
and consider nodes connected when only one quasi-identifier differs
between them by not more than a single generalization level

2. As long as non-evaluated nodes exist, pick one of them and apply the
following steps:

a) Generalize the data according to the generalization levels for this
specific node.

b) Determine the amount of rows that need to be suppressed to reach
the desired level of anonymity (d).

c) If the required suppression rate is smaller or equal than the max-
imum suppression rate (d <= dmax), this specific combination of
generalization levels can be considered acceptable. If the required
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suppression rate is higher than the maximum suppression rate
(d > dmax), this combination of generalization levels is discarded.

d) By extension, all nodes describing generalization levels equal or
higher in the tree than the evaluated node can be considered accept-
able (and marked as such) in this context as well and thus need no
separate evaluation. Similarly, if this node is discarded, all nodes
describing generalization levels lower that the evaluated node can
be discarded as well.

3. For all acceptable nodes calculate the information loss by comparing
the de-identified data set with the original one according to a specific
information loss metric. Our reference implementation uses the Samarati
approach of selecting the node with the least amount of generalization
[19].

Finally, the data set can be appropriately de-identified:

4. Apply to the data set the generalization levels described by the accept-
able node with the least amount of information loss

5. Suppress the minimum number of needed to achieve k-anonymity

When the algorithm is finished, the data set satisfies the k-anonymity con-
straint and the maximum suppression constraint (dmax) with the least amount
of generalization.

B.2. Implementation

A prototype implementation of the OLA algorithm was made and published
on the AXLE github page [2].

B.3. Evaluation

Both increasing the number of generalization levels as well as increasing the
number of quasi-identifiers will cause an exponential growth on the number
of nodes (combinations) in the lattice. Even with the optimizations provided
by the algorithm, search space for the optimal combination will be quite
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large, which makes it difficult to evaluate in reasonable time with standard
hardware. This was confirmed by the reference implementation: on a recent
desktop system (Intel Xeon X3430 at 2.40GHz, 7GB of RAM), de-identifying
a data set containing a reasonable number of 9 quasi-identifiers and 2 to 6

generalization levels for each of those, took more than a week to complete.
However, considering the usefulness of the algorithm in finding an optimal
solution, in some cases creating a faster implementation and using better
hardware might be warranted.
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