FP7-318633 AXLE Collaborative Project

Scalability Engineering: Autopartitioning
D3.5v1.0

WP3 — Scalability Engineering: D3.5 Autopartitioning
Dissemination Level: Confidential

Lead Editor: Alvaro Herrera

Date: 31/10/2014

Status: Final

Description of Work:

T3.3 Implement auto partitioning as a standalone feature. Autopartitioning would allow the
database to automatically collect statistics that it can use to allow queries to avoid accessing
certain parts of a table. Partition stats would then be usable automatically for access by any
column, not just pre-defined partition key columns. The technique will react intelligently as data
values change since the statistics adjust to the location of the data, rather than have the data
placement be driven by the requirements of a pre-defined layout.

D3.5 Scalabitlity Engineering: Autopartitioning
© 2ndQ and other members of the AXLE consortium, 2014

FP7-318633 AXLE Collaborative Project

Contributors:

Alvaro Herrera

Internal Reviewer(s):

UL: Janez Demsar
UNIMAN: Javier Navaridas

Version History

Version Date Authors Sections Affected
0.1 25/10/2014 Alvaro Herrera Initial version
29/10/2014 Alvaro Herrera Revisions following internal
review
1.0 31/10/2014 Simon Riggs Revisions following review

Table of Contents

1. Summary

2. Analysis/ Description of work done

3. Evaluation

4. Conclusion/ Future

| N[O | W]| Ww

5. References

List of Figures

Figure 1 : Data Loading, Performance and Scalability 7

Figure 2 : Comparison of Elapsed Times for Index Creation 7

Abbreviations

BRIN Block Range Indexes

D3.5 Scalabitlity Engineering: Autopartitioning

© 2ndQ and other members of the AXLE consortium, 2014

FP7-318633 AXLE Collaborative Project

1. Summary

Block Range Indexes, or BRIN for short, provide a low-maintenance-cost mechanism to
speed up queries that scan extremely large tables. This can be seen as similar to partitioning
the table in the way that the correlation of data within the table is used to avoid scanning
sections of the table. This feature delivers large speedups for many queries without incurring
the large maintenance costs of traditional indexing approaches, and without imposing the
complexity of traditional partitioning schemes that require data model changes. In short, this
novel feature makes it possible to use PostgreSQL in a different way than was previously
possible. We present some initial evaluations of our results.

BRIN is in some ways similar to work done in other databases. AXLE has extended this with
an innovative new approach; we have created a much more generic framework that will allow
this work to apply to differing datatypes and a variety of use cases.

BRIN code is now published to the PostgreSQL project. The current version, v20 has
received final review comments and is expected to be committed in November 2014.

http://www.postgresql.org/message-id/20141006223359.GL7043@eldon.alvh.no-ip.org

The BRIN feature will be available in the production release of PostgreSQL 9.5, due for
release in Sept 2015.

2. Analysis/ Description of work done

The project name has changed a number of times during development, as our understanding
of the requirements and implementation has grown.

This project started with an interest in automatically separating data into partitions as it came
into a table, so that the most common queries would be sped up by allowing them to skip
reading partitions according to query conditions; hence the original name autopartitioning.

Once we got to the detailed design phase, we decided that a new index type was the most
appropriate way of implementing this; at the time we were only considering the minimum and
maximum values for one-dimensional data types with natural sort orders, so we renamed the
project “Minmax indexes”.

Eventually, in the course of community review discussions it became apparent that the design
could be generalized to support arbitrary summary information, enabling completely different
datatypes to be indexed as well, at which point we again renamed the feature to Block Range
Indexes, or BRIN for short, which is what it is today.

We settled on a design that requires that the user declares exactly which columns to track

D3.5 Scalabitlity Engineering: Autopartitioning
© 2ndQ and other members of the AXLE consortium, 2014

FP7-318633 AXLE Collaborative Project

summary values for, by way of a CREATE INDEX command. An example of the usage
against the TPC-H database would be

CREATE INDEX ON lineitem USING BRIN (I_shipdate);

No other user requests need by made - index usage is completely automatic, given selection
by the PostgreSQL cost-based optimizer for specific queries.

The USING clause is a standard PostgreSQL construct allowing the user to specify one of the
many index types available, such as BTREE, HASH, GIST or GIN, now also BRIN.

BRIN works at index creation time by scanning a table in portions at a time, each of which we
call a “block range”. For each block range the index stores some summary information. As the
table is updated by insertion of new records, the summary data is kept up to date
automatically, just like a regular index.

When we run queries using the index the summary information is compared to the WHERE
conditions in the query. If the conditions are implied by the summary information then we need
to examine all the pages within that range, and for each page return the rows that match the
query conditions. Conversely, if the summary information does not match the conditions in the
WHERE, we know it is not possible for there to be any rows of interest and thus we can skip
reading the pages in that range altogether.

BRIN uses the standard facilities for BitmaplndexScan. Queries return a bitmap, which can
then be ANDed or ORd alongside other indexes to refine a set of blocks to scan. Rows are
then accessed using a BitmapHeapScan. An example of usage can be seen with this extract
of an EXPLAIN command of Q4 from the TPC-H

Bitmap Heap Scan on orders

(cost=6127.12..268564.24 rows=577475 width=20)

Recheck Cond: ((o_orderdate >= '1995-05-01'::date) AND
(o_orderdate < '1995-08-01"'::date))

Rows Removed by Index Recheck: 14426334

Heap Blocks: lossy=253567

Buffers: shared hit=253640

-> Bitmap Index Scan on orders o orderdate idx
(cost=0.00..5982.75 rows=577475 width=0)
Index Cond: ((o_orderdate >= '1995-05-01"'::date) AND
(o_orderdate < '1995-08-01"'::date))

Buffers: shared hit=73

The bitmap is a “lossy” bitmap, meaning we return only the blocks in the heap that need to be
scanned. So we must recheck the rows using the original index condition.

The full implementation ensures that BRIN indexes are both crash-safe and concurrent, so
after testing we are confident that BRIN is completely ready for wide dissemination.

Competing database systems (such as Oracle Exadata in its “storage indexes”, Netezza in

D3.5 Scalabitlity Engineering: Autopartitioning
© 2ndQ and other members of the AXLE consortium, 2014

FP7-318633 AXLE Collaborative Project

its “zone maps”, Infobright in its “data packs” and MonetDB) have a very similar feature, but
they restrict it to minimum and maximum values only.

BRIN does not restrict the summary information to just minimum and maximum values, but
instead provide a programmable mechanism that allows different storage depending on the
data type as well as the user's knowledge of data distribution. The set of operations
necessary to implement summarization of any individual data type is called an “operator
class”. Storing minimum and maximum values is one of the possible operator class designs,
and it enables the feature to be used for data types that have a natural sort order, such as
integer numbers, real numbers and dates, among others. The code contribution to
PostgreSQL contains operator classes for all such data types that are included in core
PostgreSQL covering the SQL Standard data types.

Additionally, it is possible to construct operator classes for data types as varied as geometric

and geographic data types (by storing the bounding box common to all elements in a page
range). We have assisted and advised other PostgreSQL community members to implement
BRIN indexes for other data types, such as inet and range datatypes. Development for new
datatypes is not trivial, but this shows it is both desirable and possible.

The generality of the design, as far as we know, is an innovation unique to PostgreSQL and
a clear advance beyond the state of the art as a result of the AXLE project.

We have performed initial analysis on the current BRIN implementation, which is covered in
the next section. Wider evaluation will be published as part of the holistic benchmark
evaluations.

D3.5 Scalabitlity Engineering: Autopartitioning
© 2ndQ and other members of the AXLE consortium, 2014

FP7-318633 AXLE Collaborative Project

3. Evaluation

One advantage of this new type of index is the low maintenance cost. In PostgreSQL, there
are very fast techniques for scanning B-Tree indexes, even when the returned row set is very
large; so arguably it would work to use B-Tree indexes for all columns in a table that are used
in the WHERE clause of a query. However, the cost of maintaining a B-Tree index as the

table is inserted into or modified is very high and most importantly the cost grows as the table

gets larger.

BRIN indexes imposes a much lower cost on new insertions, plus we have validated (Figure
1) that the cost is constant no matter the size of the table. BRIN allows many more columns
than would normally be considered and/or on very large tables.

Figure 1: Data Loading, Performance and Scalability on Large Databases

Table Growth Test

Lineitem Table Load Times
12 - (10GB Scale Factor)
[a1]
® 10 - 10 - %4
o
©
_IO 8 8 4
o i w
% 4 - Index Type s 4
= ® None]
= 29 B B-Tree >
B BRIN
0 =
I I I I I I 0 -
0 200 400 600 800 1000 None BRIN B-tree
Table Size (GB) Index type on |_shipdate (DATE) column

The main use case for AXLE is the case of continuously updated databases being accessed

for analytical purposes. For this use case, it is just not possible to create all the B-Tree
indexes that one would otherwise; in addition B-Tree index creation can reduce the resource
available for analysis for long periods. BRIN index create times are very fast.

Lineitem Table Index Create Times
(10GB Scale Factor)

100 9

80 1

60

Seconds

40 -

20 18

0- L]

B-tree BRIN
Index type on |_shipdate (DATE) column

D3.5 Scalabitlity Engineering: Autopartitioning
© 2ndQ and other members of the AXLE consortium, 2014

FP7-318633 AXLE Collaborative Project

One of the main reasons for the much faster build times are that the BRIN index relies upon
the natural sorted order of the data. BRIN is only effective when columns with a natural
correlation between their data values and the physical table ordering. Examples of where this
could help would be both Orderld and OrderDate.

The second aspect working to reduce index build time is simply size - the BRIN index is
orders of magnitude smaller. Our tests show that on a 10GB table, a B-Tree index would be
around 1GB, whereas the BRIN index is just 1.7MB, some 612 times smaller.

Index performance has not gained significantly by using BRIN, though neither has it been
measured to decrease significantly against B-Trees that access many rows, as would be
required in analytical queries.

We hope for significant performance gains in very large databases due to the reduced I/0
associated with reading indexes, using the same “I/O avoidance” theme AXLE is also
pursuing with column storage techniques. BRIN will work with column stores, given the design
that is now emerging. We also expect residual benefit from better use of available RAM as a
result of the reduced size of the BRIN index.

With BRIN, a single index can cover many columns of a table with essentially the same very
low insertion cost. It becomes feasible to have a BRIN index that covers enough columns
necessary to satisfy many more queries, and yet not have it become an excessive burden
performance-wise.

3. Conclusion/ Future

We have succeeded at providing a low-cost and extensible mechanism to optimize scans of
very large tables, something that traditional indexes cannot do because of the high
maintenance cost that comes with them. Applications in which PostgreSQL could previously
not be a viable competitor due to performance limitations will now be able to use BRIN, and
some existing users can expect performance improvements.

In particular, users that are required to preserve historical data for long periods will be able to
keep that data online, without expensive or complicated archive and prune procedures to get
rid of old data.

It is expected that novel uses of the generic per-block-range summary information provided by
BRIN will be found and we will work with potential users to create novel uses. Additional uses
so far suggested have been use for Bloom filter indexes and as a way of indexing large

stores of GIS data.

D3.5 Scalabitlity Engineering: Autopartitioning
© 2ndQ and other members of the AXLE consortium, 2014

FP7-318633 AXLE Collaborative Project

4. References
Other database systems already have similar features. Some examples:
* Oracle Exadata calls this "storage indexes"

http://richardfoote.wordpress.com/category/storage-indexes/

* Netezza has "zone maps"

http://nztips.com/2010/11/netezza-integer-join-keys/

* Infobright has this automatically within their "data packs" according to a
May 3rd, 2009 blog post

http://www.infobright.org/index.php/organizing_data_and_more_about_rough_data_contest/

* MonetDB also uses this technique, according to a published paper

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.108.2662

"Cooperative Scans: Dynamic Bandwidth Sharing in a DBMS"

D3.5 Scalabitlity Engineering: Autopartitioning
© 2ndQ and other members of the AXLE consortium, 2014

http://www.google.com/url?q=http%3A%2F%2Frichardfoote.wordpress.com%2Fcategory%2Fstorage-indexes%2F&sa=D&sntz=1&usg=AFQjCNHLgQ8_01AFxqOVO_ZzosBW-9iLXQ
http://www.google.com/url?q=http%3A%2F%2Fnztips.com%2F2010%2F11%2Fnetezza-integer-join-keys%2F&sa=D&sntz=1&usg=AFQjCNElpYoV9wVDgVgpM14qLxPwvvOX3Q
http://www.google.com/url?q=http%3A%2F%2Fwww.infobright.org%2Findex.php%2Forganizing_data_and_more_about_rough_data_contest%2F&sa=D&sntz=1&usg=AFQjCNEOg7CVHJ3TZgSh5cc6HfiSu1GhXw
http://www.google.com/url?q=http%3A%2F%2Fwww.infobright.org%2Findex.php%2Forganizing_data_and_more_about_rough_data_contest%2F&sa=D&sntz=1&usg=AFQjCNEOg7CVHJ3TZgSh5cc6HfiSu1GhXw
http://www.google.com/url?q=http%3A%2F%2Fwww.infobright.org%2Findex.php%2Forganizing_data_and_more_about_rough_data_contest%2F&sa=D&sntz=1&usg=AFQjCNEOg7CVHJ3TZgSh5cc6HfiSu1GhXw
http://www.google.com/url?q=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.108.2662&sa=D&sntz=1&usg=AFQjCNG9mQ2WB207ww6n4qqv39ARMpxKwQ

